A Special Place for Blog Lovers with a Touch of Science!

Enjoy our special posts in the fields of Earth & Planetary Sciences (EPS Blog) and Social Sciences & Arts (SSA Blog)

A Special Place for Blog Lovers with a Touch of Science!

Scientists develop stable sodium battery technology

20220110-084057sodium_batteries_f Scientists fabricate a new anode material for a rechargeable battery technology; Credit: Yixian Wang/University of Texas at Austin

Scientists fabricate a new anode material for a rechargeable battery technology; Credit: Yixian Wang/University of Texas at Austin  

Sodium metal anode resists dendrite formation

Replacing lithium and cobalt in lithium-ion batteries would result in a more environmentally and socially conscious technology, scientists say. Toward that end, University of Texas at Austin researchers, funded in part by the U.S. National Science Foundation, have developed a sodium-based battery material that is stable, can recharge as fast as a traditional lithium-ion battery, and has the potential for a higher energy output than current lithium-ion battery technologies.


Sodium Batteries

Ions in batteries travel between the negative anode and positive cathode when generating electricity. In sodium-based batteries, anodes can develop filaments called dendrites that could cause electrical shorts and increase the chances of a fire or explosion. This new sodium-based technology resists dendrite growth and recharges as fast as a lithium-ion battery. The team published the results in the journal Advanced Materials.

The anode material is made by rolling a thin sheet of sodium metal onto an antimony telluride powder and folding the sheet repeatedly, resulting in a uniform distribution of sodium atoms that resist the formation of dendrites and corrosion. The process also makes the battery more stable, with a charge rate similar to a lithium-ion battery and potentially a higher energy capacity.

"We're essentially solving two problems at once," said study co-author David Mitlin. "Typically, the faster you charge, the more of these dendrites you grow. So, if you suppress dendrite growth, you can charge and discharge faster, because all of a sudden it's safe."

The demand for stationary energy storage systems is high and rising. This technology could provide a stable, sustainable and less expensive solution. The researchers have applied for a patent on the technology.

Originally published on NSF

×
Stay Informed

When you subscribe to the blog, we will send you an e-mail when there are new updates on the site so you wouldn't miss them.

On this date, 87 years ago...
Haiku: the depths of Japanese short poems

Related Posts

EPS Recent Posts

03 February 2023
Earth & Planetary Sciences (EPS)
Credit: Getty images Where do we come from? The James Webb Space Telescope (JWST) launched on Christmas Day 2021, is already transforming our understanding of planets in our Solar System and far beyond. A versatile satellite observatory, JWST has a c...
6 Hits
30 January 2023
Earth & Planetary Sciences (EPS)
Credit: Nanostructures built using software that lets researchers design objects out of DNA. Models (top) with electron microscope images of the objects (bottom); Raghu Pradeep Narayanan and Abhay Prasad, Yan lab, Arizona State University Software le...
42 Hits
27 January 2023
Earth & Planetary Sciences (EPS)
Credit: Getty images The enhancement of human-machine interaction is expected to bring big improvements in support for learning and access to healthcare In a Swiss classroom, two children are engrossed in navigating an intricate maze with the help of...
49 Hits